3.485 \(\int \frac{1}{x^3 (d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=522 \[ -\frac{\left (61 a^2 c d^2 e^4-35 a^3 e^6-9 a c^2 d^4 e^2+15 c^3 d^6\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{6 a^2 d^3 e^2 x^2 \left (c d^2-a e^2\right )^3}+\frac{\left (-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8-30 a c^3 d^6 e^2+45 c^4 d^8\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 a^3 d^4 e^3 x \left (c d^2-a e^2\right )^3}+\frac{2 \left (c d e x \left (-7 a^2 e^4+12 a c d^2 e^2+3 c^2 d^4\right )+11 a^2 c d^2 e^4-7 a^3 e^6+a c^2 d^4 e^2+3 c^3 d^6\right )}{3 a d^2 e x^2 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{5 \left (7 a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{7/2} d^{9/2} e^{7/2}}-\frac{2 e (a e+c d x)}{3 d x^2 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*e*(a*e + c*d*x))/(3*d*(c*d^2 - a*e^2)*x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*(3*c^3*d^6 +
 a*c^2*d^4*e^2 + 11*a^2*c*d^2*e^4 - 7*a^3*e^6 + c*d*e*(3*c^2*d^4 + 12*a*c*d^2*e^2 - 7*a^2*e^4)*x))/(3*a*d^2*e*
(c*d^2 - a*e^2)^3*x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - ((15*c^3*d^6 - 9*a*c^2*d^4*e^2 + 61*a^2*c
*d^2*e^4 - 35*a^3*e^6)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(6*a^2*d^3*e^2*(c*d^2 - a*e^2)^3*x^2) + ((
45*c^4*d^8 - 30*a*c^3*d^6*e^2 - 36*a^2*c^2*d^4*e^4 + 190*a^3*c*d^2*e^6 - 105*a^4*e^8)*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(12*a^3*d^4*e^3*(c*d^2 - a*e^2)^3*x) - (5*(3*c^2*d^4 + 6*a*c*d^2*e^2 + 7*a^2*e^4)*ArcTanh
[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^
(7/2)*d^(9/2)*e^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.800339, antiderivative size = 522, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {851, 822, 834, 806, 724, 206} \[ -\frac{\left (61 a^2 c d^2 e^4-35 a^3 e^6-9 a c^2 d^4 e^2+15 c^3 d^6\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{6 a^2 d^3 e^2 x^2 \left (c d^2-a e^2\right )^3}+\frac{\left (-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8-30 a c^3 d^6 e^2+45 c^4 d^8\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 a^3 d^4 e^3 x \left (c d^2-a e^2\right )^3}+\frac{2 \left (c d e x \left (-7 a^2 e^4+12 a c d^2 e^2+3 c^2 d^4\right )+11 a^2 c d^2 e^4-7 a^3 e^6+a c^2 d^4 e^2+3 c^3 d^6\right )}{3 a d^2 e x^2 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{5 \left (7 a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{7/2} d^{9/2} e^{7/2}}-\frac{2 e (a e+c d x)}{3 d x^2 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*e*(a*e + c*d*x))/(3*d*(c*d^2 - a*e^2)*x^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*(3*c^3*d^6 +
 a*c^2*d^4*e^2 + 11*a^2*c*d^2*e^4 - 7*a^3*e^6 + c*d*e*(3*c^2*d^4 + 12*a*c*d^2*e^2 - 7*a^2*e^4)*x))/(3*a*d^2*e*
(c*d^2 - a*e^2)^3*x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - ((15*c^3*d^6 - 9*a*c^2*d^4*e^2 + 61*a^2*c
*d^2*e^4 - 35*a^3*e^6)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(6*a^2*d^3*e^2*(c*d^2 - a*e^2)^3*x^2) + ((
45*c^4*d^8 - 30*a*c^3*d^6*e^2 - 36*a^2*c^2*d^4*e^4 + 190*a^3*c*d^2*e^6 - 105*a^4*e^8)*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(12*a^3*d^4*e^3*(c*d^2 - a*e^2)^3*x) - (5*(3*c^2*d^4 + 6*a*c*d^2*e^2 + 7*a^2*e^4)*ArcTanh
[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^
(7/2)*d^(9/2)*e^(7/2))

Rule 851

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + (c*x)/e)^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^3 (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=\int \frac{a e+c d x}{x^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{2 \int \frac{-\frac{1}{2} a e \left (3 c d^2-7 a e^2\right ) \left (c d^2-a e^2\right )+4 a c d e^2 \left (c d^2-a e^2\right ) x}{x^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 a d e \left (c d^2-a e^2\right )^2}\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 \left (3 c^3 d^6+a c^2 d^4 e^2+11 a^2 c d^2 e^4-7 a^3 e^6+c d e \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x\right )}{3 a d^2 e \left (c d^2-a e^2\right )^3 x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{4 \int \frac{\frac{1}{4} a e \left (c d^2-a e^2\right ) \left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right )+a c d e^2 \left (c d^2-a e^2\right ) \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x}{x^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 a^2 d^2 e^2 \left (c d^2-a e^2\right )^4}\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 \left (3 c^3 d^6+a c^2 d^4 e^2+11 a^2 c d^2 e^4-7 a^3 e^6+c d e \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x\right )}{3 a d^2 e \left (c d^2-a e^2\right )^3 x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 a^2 d^3 e^2 \left (c d^2-a e^2\right )^3 x^2}-\frac{2 \int \frac{\frac{1}{8} a e \left (c d^2-a e^2\right ) \left (45 c^4 d^8-30 a c^3 d^6 e^2-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8\right )+\frac{1}{4} a c d e^2 \left (c d^2-a e^2\right ) \left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right ) x}{x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 a^3 d^3 e^3 \left (c d^2-a e^2\right )^4}\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 \left (3 c^3 d^6+a c^2 d^4 e^2+11 a^2 c d^2 e^4-7 a^3 e^6+c d e \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x\right )}{3 a d^2 e \left (c d^2-a e^2\right )^3 x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 a^2 d^3 e^2 \left (c d^2-a e^2\right )^3 x^2}+\frac{\left (45 c^4 d^8-30 a c^3 d^6 e^2-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 a^3 d^4 e^3 \left (c d^2-a e^2\right )^3 x}+\frac{\left (5 \left (3 c^2 d^4+6 a c d^2 e^2+7 a^2 e^4\right )\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 a^3 d^4 e^3}\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 \left (3 c^3 d^6+a c^2 d^4 e^2+11 a^2 c d^2 e^4-7 a^3 e^6+c d e \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x\right )}{3 a d^2 e \left (c d^2-a e^2\right )^3 x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 a^2 d^3 e^2 \left (c d^2-a e^2\right )^3 x^2}+\frac{\left (45 c^4 d^8-30 a c^3 d^6 e^2-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 a^3 d^4 e^3 \left (c d^2-a e^2\right )^3 x}-\frac{\left (5 \left (3 c^2 d^4+6 a c d^2 e^2+7 a^2 e^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 a^3 d^4 e^3}\\ &=-\frac{2 e (a e+c d x)}{3 d \left (c d^2-a e^2\right ) x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 \left (3 c^3 d^6+a c^2 d^4 e^2+11 a^2 c d^2 e^4-7 a^3 e^6+c d e \left (3 c^2 d^4+12 a c d^2 e^2-7 a^2 e^4\right ) x\right )}{3 a d^2 e \left (c d^2-a e^2\right )^3 x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (15 c^3 d^6-9 a c^2 d^4 e^2+61 a^2 c d^2 e^4-35 a^3 e^6\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 a^2 d^3 e^2 \left (c d^2-a e^2\right )^3 x^2}+\frac{\left (45 c^4 d^8-30 a c^3 d^6 e^2-36 a^2 c^2 d^4 e^4+190 a^3 c d^2 e^6-105 a^4 e^8\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 a^3 d^4 e^3 \left (c d^2-a e^2\right )^3 x}-\frac{5 \left (3 c^2 d^4+6 a c d^2 e^2+7 a^2 e^4\right ) \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{7/2} d^{9/2} e^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.972066, size = 467, normalized size = 0.89 \[ \frac{(a e+c d x) \left (x \left (-3 \sqrt{a} d^{5/2} \sqrt{e} x \left (7 a^2 c d e^4-15 c^3 d^5\right ) \left (c d^2-a e^2\right )^2-\sqrt{a} d^{3/2} \sqrt{e} x \left (a e^2-c d^2\right ) \left (-33 a^2 c d^2 e^5+35 a^3 e^7-15 a c^2 d^4 e^3+45 c^3 d^6 e\right ) (a e+c d x)-x (d+e x) \sqrt{a e+c d x} \left (\sqrt{a} \sqrt{d} \sqrt{e} \left (36 a^2 c^2 d^4 e^5-190 a^3 c d^2 e^7+105 a^4 e^9+30 a c^3 d^6 e^3-45 c^4 d^8 e\right ) \sqrt{a e+c d x}+15 \sqrt{d+e x} \left (7 a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )\right )+3 a^{3/2} d^{5/2} e^{3/2} \left (7 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right )^3\right )+6 a^{5/2} d^{7/2} e^{5/2} \left (a e^2-c d^2\right )^3\right )}{12 a^{7/2} d^{9/2} e^{7/2} x^2 \left (c d^2-a e^2\right )^3 ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

((a*e + c*d*x)*(6*a^(5/2)*d^(7/2)*e^(5/2)*(-(c*d^2) + a*e^2)^3 + x*(3*a^(3/2)*d^(5/2)*e^(3/2)*(c*d^2 - a*e^2)^
3*(5*c*d^2 + 7*a*e^2) - 3*Sqrt[a]*d^(5/2)*Sqrt[e]*(c*d^2 - a*e^2)^2*(-15*c^3*d^5 + 7*a^2*c*d*e^4)*x - Sqrt[a]*
d^(3/2)*Sqrt[e]*(-(c*d^2) + a*e^2)*(45*c^3*d^6*e - 15*a*c^2*d^4*e^3 - 33*a^2*c*d^2*e^5 + 35*a^3*e^7)*x*(a*e +
c*d*x) - x*Sqrt[a*e + c*d*x]*(d + e*x)*(Sqrt[a]*Sqrt[d]*Sqrt[e]*(-45*c^4*d^8*e + 30*a*c^3*d^6*e^3 + 36*a^2*c^2
*d^4*e^5 - 190*a^3*c*d^2*e^7 + 105*a^4*e^9)*Sqrt[a*e + c*d*x] + 15*(c*d^2 - a*e^2)^3*(3*c^2*d^4 + 6*a*c*d^2*e^
2 + 7*a^2*e^4)*Sqrt[d + e*x]*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])]))))/(12*a^(7
/2)*d^(9/2)*e^(7/2)*(c*d^2 - a*e^2)^3*x^2*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.067, size = 1319, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

9/4/d^3/a/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+15/8/a^3/e^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c^2+1
/4*e/a/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c^2-35/8*e/d^4/a/(a*d*e)^(1/2)
*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)+2/3*e^2/d^3/(a*e^2-c*
d^2)/(d/e+x)/(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-35/8*e^5/d^4*a/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-7/2*e^3/d^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2)*c-15/4*d^3/a^3/e^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*c^4-
35/4*e^4/d^3/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*c+7/4*e^2/d/a/(-a^2*e^
4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*c^2-16/3*e^4/d*c^2/(a*e^2-c*d^2)^3/(c*d*e*(
d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-8/3*e^5/d^2*c/(a*e^2-c*d^2)^3/(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^
(1/2)*a+35/8*e/d^4/a/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-8/3*e^3*c^2/(a*e^2-c*d^2)^3/(c*d*e*(d/e+x)^2+(a*e
^2-c*d^2)*(d/e+x))^(1/2)+15/4/d^2/a^2/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c-1/2/d^2/a/e/x^2/(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(1/2)-15/8/a^3/e^3/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e
^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c^2-5/2*d^2/a^2/e/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d
*e*x^2)^(1/2)*c^3-15/8*d^4/a^3/e^3/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c^
4-15/4/d^2/a^2/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(
1/2))/x)*c+5/4/d/a^2/e^2/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c-5/4*d/a^2/(-a^2*e^4+2*a*c*d^2*e^2-c^2*d^4
)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*c^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}{\left (e x + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \left [\mathit{undef}, \mathit{undef}, \mathit{undef}, 1\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

[undef, undef, undef, 1]